Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae.

نویسندگان

  • Weihua Fei
  • Gabriel Alfaro
  • Baby-Periyanayaki Muthusamy
  • Zachary Klaassen
  • Todd R Graham
  • Hongyuan Yang
  • Christopher T Beh
چکیده

The pandemic of lipid-related disease necessitates a determination of how cholesterol and other lipids are transported and stored within cells. The first step in this determination is the identification of the genes involved in these transport and storage processes. Using genome-wide screens, we identified 56 yeast (Saccharomyces cerevisiae) genes involved in sterol-lipid biosynthesis, intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological examination of mutant cells revealed an unanticipated link between secretory protein glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of lipids. Together with the analysis of other deletion mutants, these results suggested at least two distinct events for the biogenesis of lipid storage particles: a step affecting neutral-lipid synthesis, generating the lipid core of storage particles, and another step for particle assembly. In addition to the lipid storage mutants, we identified mutations that affect the localization of unesterified sterols, which are normally concentrated in the plasma membrane. These findings implicated phospholipase C and the protein phosphatase Ptc1p in the regulation of sterol distribution within cells. This study identified novel sterol-related genes that define several distinct processes maintaining sterol homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlapping functions of the yeast oxysterol-binding protein homologues.

The Saccharomyces cerevisiae genome encodes seven homologues of the mammalian oxysterol-binding protein (OSBP), a protein implicated in lipid trafficking and sterol homeostasis. To determine the functions of the yeast OSBP gene family (OSH1-OSH7), we used a combination of genetics, genomics, and sterol lipid analysis to characterize OSH deletion mutants. All 127 combinations and permutations of...

متن کامل

The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae.

Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphi...

متن کامل

A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.

Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resi...

متن کامل

Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae

Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. ...

متن کامل

A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae.

Aerobically growing wild-type strains of Saccharomyces cerevisiae are unable to take exogenously supplied sterols from media. This aerobic sterol exclusion is vitiated under anaerobic conditions, in heme-deficient strains, and under some conditions of impaired sterol synthesis. Mutants which can take up sterols aerobically in heme-competent cells have been selected. One of these mutations, desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2008